Summary measures

Preliminaries

- Σ is shorthand for addition
- Suppose x_{i} is the i th observation.

$$
x_{1}+x_{2}+x_{3}=\sum_{i=1}^{3} x_{i}
$$

- If a is a constant

$$
\sum_{i=1}^{n} a=n a
$$

- Mixed example:

$$
\sum_{i=1}^{n} a x_{i}=a \sum_{i=1}^{n} x_{i}
$$

Summary measures

Preliminaries

- b a constant
- n observations
- Simplify $\sum_{i=1}^{n}\left(a+b x_{i}\right)$
- Group terms:

$$
\begin{aligned}
\sum_{i=1}^{n}\left(a+b x_{i}\right) & =a+b x_{1}+a+b x_{2}+\ldots+a+b x_{n} \\
& =a+a+a \ldots b x_{1}+b x_{2}+\ldots b x_{n} \\
& =a n+b \sum_{i=1}^{n} x_{i}
\end{aligned}
$$

Summary measures

Preliminaries

- Let $\left\{x_{i}, y_{i}\right\}$ be paired observations
- k another constant.
- Simplify:

$$
\sum_{i=1}^{n}\left(a k+b x_{i}+c\left(x_{i} y_{i}\right)\right)=? ? ?
$$

- Treat $x_{i} y_{i}$ as any other variable that varies in i.

$$
\sum_{i=1}^{n}\left(a k+b x_{i}+c\left(x_{i} y_{i}\right)\right)=n a k+\sum_{i=1}^{n} b x_{i}+\sum_{i=1}^{n}\left(c x_{i} y_{i}\right)
$$

- Pull out the constants:

$$
n a k+\sum_{i=1}^{n} b x_{i}+\sum_{i=1}^{n}\left(c x_{i} y_{i}\right)=n a k+b \sum_{i=1}^{n} x_{i}+c \sum_{i=1}^{n}\left(x_{i} y_{i}\right)
$$

Summary measures

Statistics that describe distributions

- Measures of central tendency
(1) Mean
(2) Median
(3) Mode
- Measures of variation
(1) Range
(2) Variance
(3) Standard Deviation
- Measures of shape
(1) "Skew"

Summary measures

Measures of central tendency

- Mean
- Most common
- Central tendency

$$
\widehat{\mu}_{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- Median
- Mid-point of the data.
- To calculate:
(1) Order the data.
(2) Calculate $(n+1) / 2$
(3) Take the value at $(n+1) / 2$, or the average of the two closest (if $(n+1) / 2$ is not whole)

Summary measures

Measures of central tendency (cont.)

- Mode
- The value that occurs most often
- Question: which measure(s) of central tendency are not affected by extreme values?
\Rightarrow Median and Mode

Summary measures

Measures of variation

- Range
- A measure of data dispersion, though not used for many applications
- To calculate:
(1) Identify the largest observation
(2) Identify the smallest observation
(3) Take the difference

Summary measures

Measures of variation (cont.)

- Sample Variance
- The most commonly used measure of dispersion.
- Summarizes the how far a typical observation is from the mean

$$
\widehat{\sigma}_{x}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}_{x}\right)^{2}
$$

- Why do we divide by $n-1$ instead of n ?
\Rightarrow We used one "piece" of information to calculate $\widehat{\mu}_{x}$

Summary measures

Measures of variation (cont.)

- Sample Standard deviation

$$
\widehat{\sigma}_{x}=\sqrt{\widehat{\sigma}_{x}^{2}}
$$

- This is more desirable than the sample variance. Why?
- Same scale as the mean.

Covariance

Relationships

- Covariance describes the relationship between two random variables

$$
\widehat{\sigma}_{x y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}_{x}\right)\left(y_{i}-\widehat{\mu}_{y}\right)
$$

- When will covariance be positive/negative?
- $\widehat{\sigma}_{x y}>0 \Rightarrow$ tends to have $x_{i}>\widehat{\mu}_{x}$ when $y_{i}>\widehat{\mu}_{y}$ (and vice versa)
- $\widehat{\sigma}_{x y}<0 \Rightarrow$ tends to have $x_{i}>\widehat{\mu}_{x}$ when $y_{i}<\widehat{\mu}_{y}$ (and vice versa)
- Covariance describes a "linear" relationship
- Any non-linear relationships with zero covariance?

Correlation

Basic

- Correlation describes a linear relationship
- $\widehat{\rho}_{x y}=\frac{\widehat{\sigma}_{x y}}{\widehat{\sigma}_{x} \widehat{\sigma}_{y}}$
- $\widehat{\rho}_{x y} \in[-1,1]$
- Can you prove that correlation is between -1 and 1 ?

Data Scaling

Mean

- What happens when we scale variables by either adding a constant or multiplying by a constant?
- Sample: $X=\{2,3,4\}$
- Calculate the mean of X :

$$
\begin{aligned}
\widehat{\mu}_{x} & =\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
& =\frac{1}{3}(2+3+4) \\
& =3
\end{aligned}
$$

- Calculate the variance of X :

$$
\begin{aligned}
\widehat{\sigma}_{x}^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}_{x}\right)^{2} \\
\widehat{\sigma}_{x}^{2} & =\frac{1}{2}\left((2-3)^{2}+(3-3)^{2}+(4-3)^{2}\right)=\frac{1}{2}(1+0+1)=1
\end{aligned}
$$

Scaling

- What if we define a new variable, $Z=X+3$
- Calculate the mean of $Z=\{5,6,7\}$
- What will happen to the mean, variance?

$$
\begin{aligned}
\widehat{\mu}_{z} & =\frac{1}{3}(5+6+7)=6 \\
\widehat{\sigma}_{z}^{2} & =\frac{1}{2}\left((5-6)^{2}+(6-6)^{2}+(7-6)^{2}\right) \\
& =\frac{1}{2}(1+0+1)=1
\end{aligned}
$$

- Adding a constant does affect central tendency.
- Adding a constant does not affect dispersion.
$\begin{array}{llllllllll}- & 1 & \mathbf{2} & \mathbf{3} & \mathbf{4} & 5 & 6 & 7 & 8 & 9 \\ - & 1 & 2 & 3 & 4 & \mathbf{5} & 6 & 7 & 8 & 9\end{array}$

Scaling

Multiplying by a constant

- What if we define a new variable, $J=3 X$
- Calculate the mean/variance of $J=\{6,9,12\}$
- What will happen to the mean, variance?

$$
\begin{aligned}
\widehat{\mu}_{z} & =\frac{1}{3}(6+9+12)=9 \\
\widehat{\sigma}_{z}^{2} & =\widehat{\sigma}_{j}^{2}=\frac{1}{2}\left((6-9)^{2}+(9-9)^{2}+(12-9)^{2}\right) \\
& =\frac{1}{2}(9+0+9)=9
\end{aligned}
$$

- Multiplying by a constant affects both mean and variance.

1	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	5	6	7	8	9	10	11	12
1	2	3	4	5	6	7	8	9	10	11	$\mathbf{1 2}$

- Generally, if $J=a X$, then $\widehat{\sigma}_{j}^{2}=a^{2} \widehat{\sigma}_{x}^{2}, \widehat{\mu}_{j}=a \widehat{\mu}_{x}$

Covariance

Scaling

- Suppose $Z=a X$. What is $\widehat{\sigma}_{z y}$?
- Write $\widehat{\sigma}_{z y}$

$$
\widehat{\sigma}_{z y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(z_{i}-\widehat{\mu}_{z}\right)\left(y_{i}-\widehat{\mu}_{y}\right)
$$

- Substitute for $\widehat{\mu}_{z}$ and z_{i}

$$
\widehat{\sigma}_{z y}=\frac{1}{n-1} \sum_{i=1}^{n}\left(a x_{i}-a \widehat{\mu}_{x}\right)\left(y_{i}-\widehat{\mu}_{y}\right)
$$

- Factor out a and simplify:

$$
\widehat{\sigma}_{z y}=a \frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}_{x}\right)\left(y_{i}-\widehat{\mu}_{y}\right)=a \widehat{\sigma}_{x y}
$$

- Covariance is sensitive to scale!! Is this a problem?

Correlation

Scaling

- Is correlation sensitive to scale?
- Suppose $Z=a X, a>0$.
- $\widehat{\rho}_{z y}=\frac{\widehat{\widehat{\sigma}}_{z y}}{\widehat{\sigma}_{z} \widehat{\sigma}_{y}}=\frac{a \widehat{\sigma}_{x y}}{a \widehat{\sigma}_{x} \widehat{\sigma}_{y}}=\frac{\widehat{\sigma}_{x y}}{\widehat{\sigma}_{x} \widehat{\sigma}_{y}}=\widehat{\rho}_{x y}$

